Spiders use Earth’s Electric Field to Fly Hundreds of Miles

On October 31, 1832, a young naturalist named Charles Darwin walked onto the deck of the HMS Beagle and realized that the ship had been boarded by thousands of intruders.

Tiny red spiders, each a millimeter wide, were everywhere. The ship was 60 miles offshore, so the creatures must have floated over from the Argentinian mainland. All the ropes were coated and fringed with gossamer web.

Spiders have no wings, but they can take to the air nonetheless. They’ll climb to an exposed point, raise their abdomens to the sky, extrude strands of silk, and float away. This behavior is called ballooning.

It might carry spiders away from predators and competitors, or toward new lands with abundant resources. But whatever the reason for it, it’s clearly an effective means of travel. Spiders have been found two and a half miles up in the air, and 1,000 miles out to sea.

It is commonly believed that ballooning works because the silk catches on the wind, dragging the spider with it. But that doesn’t entirely make sense, especially because spiders balloon only during light winds.

https://www.e-architect.com/images/jpgs/bristol/bristol_university_building_sr270409.jpg

But Erica Morley and Daniel Robert have an explanation. The duo, who work at the University of Bristol, has shown that spiders can sense Earth’s electric field, and use it to launch themselves into the air.

Every day, around 40,000 thunderstorms crackle around the world, collectively turning Earth’s atmosphere into a giant electrical circuit. The upper reaches of the atmosphere have a positive charge, and the planet’s surface has a negative one.

Even on sunny days with cloudless skies, the air carries a voltage of around 100 volts for every meter above the ground. In foggy or stormy conditions, that gradient might increase to tens of thousands of volts per meter.

Ballooning spiders operate within this planetary electric field. When their silk leaves their bodies, it typically picks up a negative charge. This repels the similar negative charges on the surfaces on which the spiders sit, creating enough force to lift them into the air.

And spiders can increase those forces by climbing onto twigs, leaves, or blades of grass. Plants, being earthed, have the same negative charge as the ground that they grow upon, but they protrude into the positively charged air.

This creates substantial electric fields between the air around them and the tips of their leaves and branches—and the spiders ballooning from those tips.

https://www.universetoday.com/wp-content/uploads/2015/05/Magnetic-field-Earth-labeled-NASA.jpg

This idea—flight by electrostatic repulsion—was first proposed in the early 1800’s, around the time of Darwin’s voyage. Peter Gorham, a physicist, resurrected the idea in 2013, and showed that it was mathematically plausible. And now, Morley and Robert have tested it with actual spiders.

In response, the spiders performed a set of movements called tiptoeing—they stood on the ends of their legs and stuck their abdomens in the air. That behavior is only ever seen before ballooning.

Many of the spiders actually managed to take off, despite being in closed boxes with no airflow within them. And when Morley turned off the electric fields inside the boxes, the ballooning spiders dropped.

https://www.syracuse.com/resizer/tBHUreVAvF5Red2M3AZ7kwwPqp0=/1280x0/smart/advancelocal-adapter-image-uploads.s3.amazonaws.com/image.syracuse.com/home/syr-media/width2048/img/us-news/photo/2015/05/18/spider-stock-52f6d344587e2911.jpg

It’s especially important, says Angela Chuang, from the University of Tennessee, to know that spiders can physically detect electrostatic changes in their surroundings. That’s the foundation for lots of interesting research questions.

How do various electric-field strengths affect the physics of takeoff, flight, and landing? Do spiders use information on atmospheric conditions to make decisions about when to break down their webs, or create new ones?

Air currents might still play some role in ballooning. After all, the same hairs that allow spiders to sense electric fields can also help them to gauge wind speed or direction.

https://www.thunderbolts.info/wp/wp-content/uploads/2018/01/16713243368_0bcd26026d_b.jpg

And Moonsung Cho from the Technical University of Berlin recently showed that spiders prepare for flight by raising their front legs into the wind, presumably to test how strong it is.

Still, Morley and Robert’s study shows that electrostatic forces are, on their own, enough to propel spiders into the air. This is really top-notch science. It seemed very clear that electric fields played a central role, but we could only speculate on how the biology might support this.

The Atlantic / Crickey Conservation Foundation

15 Comments on “Spiders use Earth’s Electric Field to Fly Hundreds of Miles

  1. Nature is God and people can never destroy nature before destroying themselves. Nature will always bounce back, human won’t. So that is why the world should learn to understand how nature works through science if necessary?

    Like

  2. So much information on the internet nowadays, that anyone can turn into an academic specialist on multiple topics by analyzing the facts to form a well judged opinion? I, myself like the elements of and in nature conservation.

    Liked by 1 person

  3. De wonderen zijn de wereld nog niet uit. Misschien kan de mens ook gebruik maken van deze technology, dan wordt vliegen een stuk aangenamer voor de natuur?

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.